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Module Learning Goals 

ÁUnderstand why you might want to perform uncertainty 
quantification (UQ) 

 

ÁUnderstand prerequisites and have a practical process for UQ 
at your disposal 

 

ÁBe able to formulate your problem, present it to Dakota, and 
run and understand studies 

 

ÁBe able to select an appropriate Dakota UQ method 

 

ÁKnow how to use Dakota UQ results 
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Module Outline 

Á Introduction: application examples to define UQ, illustrate the UQ 
process, and explain why you might care 

Á UQ terminology: characterizing and expressing your problem to Dakota 

 

Á Monte Carlo sampling for UQ  

Á Exercise: Dakota input and output for Monte Carlo sampling 

 

Á Selecting an uncertainty quantification method; reliability and polynomial 
chaos 

Á Exercise: Comparing UQ methods and problem assumptions 

 

Á Beyond Dakota: follow-on activities using UQ results 

Á Summary of advanced  topics and references 



Á What? Determine variability, distributions, statistics of code outputs, 
given uncertainty in input factors; put error bars on simulation output 

Á Why? Tactically, assess likelihood of typical or extreme outcomes.  Given 
ƛƴǇǳǘ ǳƴŎŜǊǘŀƛƴǘȅΧ 

Á Determine mean or median performance of a system 

Á Assess variability or robustness of model response 

Á Find probability of reaching failure/success criteria (reliability metrics) 

Á Assess range/intervals of possible outcomes 

Á Ultimately, use simulations for risk-informed decision making, e.g., assess 
how close uncertainty-endowed code predictions are to 

Á Experimental data  
(validation, is model sufficient  
for the intended application?) 

Á Performance expectations or limits  
(quantification of margins and  
uncertainties; QMU) 

Why Uncertainty Quantification? 
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Example: 
Thermal Uncertainty Quantification 

Á Device subject to heating (experiment or 
corresponding computational simulation) 

Á Uncertainty in composition/ environment 
(thermal conductivity, density, boundary), 
parameterized by u1Σ ΧΣ uN 

Á Response temperature f(u)=T(u1Σ ΧΣ uN)  
calculated by heat transfer code 

Given distributions of u1ΣΧΣuN, UQ 
methods calculate statistical info on 
outputs: 

ω Mean(T), standard deviation(T),  
Probability(T җ Tcritical) 

ω Probability distribution of 
temperatures 

ωBounds on temperature (min/max) 
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Example: 
MEMS Manufacturing Uncertainty 

Á Micro-electromechanical system (MEMS): typically made  
from silicon, polymers, or metals; used as micro-scale sensors,  
actuators, switches, and machines 

Á MEMS designs: subject to substantial variability, lack historical knowledge base; 
uncertainty from materials, micromachining, photo lithography, etching process 

Á Resulting part yields can be low or have poor cycle durability 

Á Goal: UQ with finite element model of bi-stable ǎǿƛǘŎƘ ǘƻΧ 

Á Assess reliability in predicted actuation force and variability in min/max force 

Á Minimize sensitivity to uncertainties (robustness) 

bistable  
MEMS  
switch 

uncertain parameters: 
edge bias and residual stress 



Example: Uncertainty in Boiling Rate in  
Nuclear Reactor Core (DOE CASL) 

Method 

ME_nnz ME_meannz ME_max 

Mean Std 

Dev 

Mean Std 

Dev 

Mean Std 

Dev 

LHS (40) 651.225 297.039 127.836 27.723 361.204 55.862 
LHS (400) 647.33 286.146 127.796 25.779 361.581 51.874 
LHS (4000) 688.261 292.687 129.175 25.450 364.317 50.884 
PCE (Ū(2)) 687.875 288.140 129.151 25.7015 364.366 50.315 
PCE (Ū (3)) 688.083 292.974 129.231 25.3989 364.310 50.869 
PCE (Ū (4)) 688.099 292.808 129.213 25.4491 364.313 50.872 

anisotropic uncertainty 
distribution in boiling rate 

throughout  quarter core model 
(side view) 

normally distributed inputs need not give 
ǊƛǎŜ ǘƻ ƴƻǊƳŀƭƭȅ ŘƛǎǘǊƛōǳǘŜŘ ƻǳǘǇǳǘǎΧ 

mean and standard deviation of key metrics 

Á Use nuclear reactor thermal-hydraulics model to assess uncertainty in 
localized boiling due to variable operating conditions 

Á Compare Dakota UQ approaches and modelling assumptions 



Discussion:  
Uncertainties in Your Domain 

 

ÁWhat are the key uncertainties that affect your experiments, 
analysis, and work products? 

 

ÁHow do you account for them when using science and 
engineering computational models? 
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A Practical Process for UQ 

1. Determine your UQ analysis goal 
Á What are the key model responses (quantities of interest) 

Á What kinds of statistics or metrics do you want on them? 

2. Identify potentially influential uncertain input parameters 
Á Includes parameters that influence trend in response as well as those that influence 

variability in response 

3. Characterize input uncertainties and map them into Dakota variable 
specifications 

4. What are the model characteristics/behaviors?  Recall: 
Á Simulation cost, model robustness, input/output properties such as kinks, 

discontinuities, multi-modal, noise, disparate regimes 

5. Select a method appropriate to variables, goal, and problem 

6. Set up Dakota input file and interface to simulation 

7. Run study and interpret the results 
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covered in 
other modules 

Up next: Discuss 1, 2 and 3, relate to Dakota, and see a simple example of 6, 7 



Familiarize Yourself with Key Statistics Ideas: 
Moments of Random Variables 

Understanding the following basic concepts will help with Dakota UQ 
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Á Concept of a random variable X 
 

Á Mean (m, ˃ ): expected or average 
value of X, e.g., mean of sample of 
size N: 
 

Á Standard deviation (s, ̀ ): measure 
of dispersion / variability of X: 

realizations of random variables 
with mean ˃ =100, standard 

deviation ů=10, ů=50 
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In the earlier MEMS application, the 
manufactured edge has a  
mean bias of -0.2 ˃ m, with  
standard deviation 0.08 ˃m: 
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Familiarize Yourself with Key Statistics Ideas: 
PDFs, CDFs, Intervals 

Understanding the following basic concepts will help with Dakota UQ 
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Á Probability density / probability 
mass function: relative likelihood 
of a given value of X 
 

Á Cumulative distribution function: 
probability that X will take on a 
value less than or equal to x: 
P(·ҖȄ) 
 

Á Interval-valued uncertainty: X can 
take on any value in the interval 
[a,b], but no probability or 
likelihood of one value vs. another 

probability density  
functions 

cumulative  
distribution 
 functions 

probability  
mass function 

For the earlier thermal application, 
a PDF or CDF can answer questions 
about the probability of exceeding a 

critical temperature. 



Dakota Uncertainty Quantification 

Á Dakota UQ methods primarily focus on forward propagation of parametric 
uncertainties through a model: determine uncertainty in model output, 
given uncertainty in input parameters 

 

 

 

 

 

 

Á Example uncertain inputs: physics parameters, material properties 
boundary/initial conditions, operating conditions, model choice, geometry 

 

Á /ŀƴ ŀƭǎƻ ǇŜǊŦƻǊƳ άƛƴǾŜǊǎŜ ¦vέ ǘƻ ŘŜǘŜǊƳƛƴŜ ǳƴŎŜǊǘŀƛƴǘƛŜǎ ƛƴ ǇŀǊŀƳŜǘŜǊǎ 
consistent with data (not covered in this module) 
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Computational 
Model 

Uncertainty  
in output f(u) 

variability, 
probabilities, 

intervals (ranges), 
belief/plausibility, 

etc. 

Uncertainty in input variables u 
 

[                    ] 
[                    ] 

[                    ] 
intervals 

probability densities 



[                            ] 

[                            ] 

[                            ] 

[                            ] 

Categories of Uncertainty 

This distinction can help in selecting Dakota variable types and method 

Á Aleatory (think probability density function, frequency; sufficient data) 

Á Inherent variability (e.g., in a population), type-A, stochastic 

ÁLǊǊŜŘǳŎƛōƭŜΥ ŦǳǊǘƘŜǊ ƪƴƻǿƭŜŘƎŜ ǿƻƴΩǘ ƘŜƭǇ 

Á Ideally simulation would incorporate this variability 

 

Á Epistemic (e.g., bounded intervals, distribution with uncertain parameters) 

ÁSubjective, type-B, state of knowledge uncertainty 

ÁReducible:  more data or information, would  
make uncertainty estimation more precise 

ÁFixed value in simulation, e.g., elastic 
modulus, but not well known for this material 

 

See separate course on motivation for aleatory vs. epistemic uncertainty 

 



Characterizing Uncertainties to Dakota 

Á aǳǎǘ ŎƘŀǊŀŎǘŜǊƛȊŜ ŜŀŎƘ ǾŀǊƛŀōƭŜΩǎ ǳƴŎŜǊǘŀƛƴǘȅ ŀƴŘ όƻǇǘƛƻƴŀƭƭȅύ ŀƴȅ 
correlation between pairs of variables.  Need not be normal (or uniform)!  

Á May require processing data with math/stats tool to fit distributions, 
performing literature searches, or querying experts 

 

 

 

 

Dakota uncertain variable types: 

Á Aleatory continuous: normal, lognormal, uniform, loguniform, triangular, 
exponential, beta, gamma, Gumbel, Frechet, Weibull, histogram 

Á Aleatory discrete: Poisson, binomial, negative binomial, hypergeometric, 
histogram point (integer, real, string) 

Á Epistemic: continuous interval, discrete interval, discrete set 
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normal lognormal Poisson histogram 



Specifying Dakota Uncertain Variables 

Á UQ problems are specified to 
Dakota using uncertain variables 
(keywords *_uncertain ) 

Á Typically generic response 
functions are used 

 

Á Thermal UQ example: here is a 
possible Dakota input file fragment 
for the uncertain variable types 
shown on the previous slide 

 

Á See the Reference Manual 
variables section for all variable 
types and their parameters 

variables  

  normal_uncertain  1 

    descriptors     'density'  

    means           8.1  

    std_deviations   1.7  

  lognormal_uncertain  1 

    descriptors    ' specific_heat '  

    means          2.7  

    error_factors   1.1  

  poisson_uncertain  

    descriptors  ' fire_strength '  

    lambdas      1.5  

  histogram_bin_uncertain  1 

    descriptors  ' foam_thickness '  

    num_pairs     4 

      abscissas  2.5 3.0 3.5 4.0  

      counts     15  11  20  0  

 

responses  

  response_functions  2 

  descriptors 'pressure' 'temperature'  

  ...  
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https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html
https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html


Workhorse UQ Method: 
Monte Carlo Sampling 
Á Sampling methods draw (pseudo-random) realizations from the specified 

input distributions, run the simulation, and calculate sample statistics: 
Á Sample moments, min/max, empirical PDF/CDF, based on ensemble of calculations 

 

 

 

 

 

 
 

Á Robust even for complex, poorly-behaved simulations  

Á Slow, though reliable convergence: O(N-1/2), (in theory) independent of dimension 

Á Parallelism: all samples are known at onset and can be evaluated concurrently 

 

 

Ensemble  
of Outputs  

response 1 

response 2 

Model 

Ensemble 
of Inputs 

u1 

u2 

u3 

Monte Carlo sample 
of two input variables 



Latin Hypercube Sampling (LHS) 

Á Dakota has sample_type  options random and lhs  

Á LHS is recommended when possible 
Á Better convergence rate and stability across replicates 

Á Any follow-on studies must double the sample size 

Á LHS (McKay and Conover): stratified random 
sampling among equal probability bins for all 1-D 
projections of an n-dimensional set of samples 
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A two-dimensional LHS of size 5 Uniform LHS designs of sizes 5 and 10 



Exercise: LHS Sampling 

Your boss announces that she can get a great 
deal on coat hooks from a local machine shop 
that happens to be owned by her brother-in-
law. He unfortunately is not a very good 
machinist, but insists that the dimensions of 
most of the parts he makes are within 10% of 
what was requested. 
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Based on a design you developed earlier to 
support a 350 lb. horizontal load (X) and 
500 lb. vertical load (Y), your boss proposes 
that the hooks be 5 in. long (L), 2 in. wide 
(w), and 2 in. thick (t). 

Image sources: http://resourcelibrary.clemetzoo.com/photos/82; https://commons.wikimedia.org/wiki/File:Eastern_riveted_armor.JPG 

 



Exercise: LHS Sampling 

Putting aside for the moment the ethical concerns raised by your bossôs 

obvious conflict of interest, create a sampling  study in Dakota to address these 

questions using Cantilever Physics: 

Á Determine the variability in stress and displacement that 10% error in the 

dimensions (L, w, and t) can be expected to produce. 
Á Hint 1: Produce plots of these responses vs. probability levels, i.e. cumulative distribution 

functions (CDFs).  

Á Hint 2: Assume hook dimensions are normally distributed. Use the specified dimensions as 

the means and 10% of the specified dimensions as standard deviations. 

Á Your boss previously stipulated that the stress and displacement under 

load be no greater than 100,000 psi and 0.001 in., respectively. What 

fraction of the coat hooks produced by her brother-in-law can be expected 

to violate these constraints? 
Á Hint: These can be read off of the CDFs, but Dakota can also estimate them for you. 

 

Assume that Youngôs modulus (E) is 2.9e7 psi and density (p) is 500 lb/ft3. 

 

Exercise materials located in ~/exercises/ uncertainty_analysis /1  
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Exercise Questions 

ÁWhere do you find the relevant Dakota output? 

ÁWhat statistical quantities do you find in the output? 

 

ÁGroup A: What happens if you increase/decrease the number 
of samples? 

ÁGroup B: What happens if you change the uncertainty 
characterization of one or more variables? 
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Observations 
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My variables are 
normally distributed. 
5ƻŜǎƴΩǘ ǘƘŀǘ ƳŜŀƴ ǘƘŀǘ 
my responses will be, 
too? 

ò 

Probability plots created in Minitab 
show how well the Dakota-generated 
sample data follow an assumed 
distribution (in this case normal) 

ñ 



A Practical Process for UQ 

1. Determine your UQ analysis goal 
Á What are the key model responses (quantities of interest) 

Á What kinds of statistics or metrics do you want on them? 

2. Identify potentially influential uncertain input parameters 
Á Includes parameters that influence trend in response as well as those that influence 

variability in response 

3. Characterize input uncertainties and map them into Dakota variable 
specifications 

4. What are the model characteristics/behaviors?  Recall: 
Á Simulation cost, model robustness, input/output properties such as kinks, 

discontinuities, multi-modal, noise, disparate regimes 

5. Select a method appropriate to variables, goal, and problem 

6. Set up Dakota input file and interface to simulation 

7. Run study and interpret the results 
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covered in 
other modules 

Based on variables, analysis goals, ŀƴŘ ǇǊƻǇŜǊǘƛŜǎΣ ǎŜƭŜŎǘ ŀƴ ŀǇǇǊƻǇǊƛŀǘŜ ƳŜǘƘƻŘΧ 



Selecting a UQ Method 

Sampling (Monte Carlo, LHS) 

Á Robust, understandable, and 
applicable to most any model 

Á Slow to converge 

Á Moments, PDF/CDF, correlations, 
min/max 

Reliability 

Á Goal-oriented; target particular 
response or probability levels 

Á Efficient local (require derivatives) / 
global variants 

Á Moments, PDF/CDF, importance 
factors 
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Stochastic Expansions 

Á Surrogate models tailored to UQ for 
continuous variables 

Á Highly efficient for smooth model 
responses 

Á Moments, PDF/CDF, Sobol indices 

Epistemic 

Á Non-probabilistic methods 

Á Generally applicable, can be costly 
when no surrogate 

Á Belief/plausibility, intervals, 
probability of frequency 

Consider variable characterizations, model properties, ultimate 
UQ goal to choose a method 



Reliability Methods: 
What Are They? 

Á Goal-oriented methods that focus on regions of probability or response 
space of interest, for example: 

ÁWhat temperature is achieved with 99% probability? 

ÁWhat is the probability of exceeding Tcritical? 

Á Naïve sampling can be ineffective / under-resolved 

Á Run 10,000 samples, only 5 are in relevant region 

Á Need to specify to Dakota 

Á Probability or response threshold(s) of interest using  
probability_levels , response_levels  

Á Method choice 
Á Mean-value: best for linear problems, normally distributed parameters, efficient derivatives; 

specify local_reliability  (with no mpp_search)  

Á MPP: computes most probable point of failure when failure boundary is near linear or 
quadratic; specify local_reliability  (with an mpp_search option) 

Á Adaptive: computes probability of failure for complicated failure boundaries; specify 
global_reliability  
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T 
Tcritical 



Mean-value: uses derivatives; make a 
linearity (and possibly normality) 
assumption and project 
 
 
 
 
 
MPP: solve an optimization problem to 
directly determine input values giving 
rise to most probable point of failure 
 
 
 
 
Adaptive: iteratively refine 
understanding of failure region 
 

Reliability Methods: 
How Do They Work? 

Á Reliability methods try to directly 
calculate statistics of interest: 
Á Make simplifying approximations and/or 

Á Recast the UQ as an iterative procedure, such 
as iteratively refined sampling or as a 
nonlinearly constrained optimization problem 
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